热点学习纸黄金理财白银

当前位置: 主页 > 债务

ARMA模型

ARMA模型概述
  ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
">编辑] ARMA模型三种基本形式
  1.自回归模型(AR:Auto-regressive);
  自回归模型AR(p):如果时间序列 y t满足
  其中ε t是独立同分布的随机变量序列,且满足:
   Et) = 0  
  则称时间序列为 y t服从p阶的自回归模型。或者记为φ( B) y t = ε t
  自回归模型的平稳条件:
  滞后算子多项式 的根均在单位圆外,即φ( B) = 0的根大于1。
  2.移动平均模型(MA:Moving-Average)
  移动平均模型MA(q):如果时间序列 y t满足
  则称时间序列为 y t服从q阶移动平均模型;
  移动平均模型平稳条件:任何条件下都平稳。
  3.混合模型(ARMA:Auto-regressive Moving-Average)
  ARMA(p,q)模型:如果时间序列 y t满足:
  则称时间序列为 y t服从(p,q)阶自回归滑动平均混合模型。或者记为φ( B) y t = θ( Bt
  特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q),
ARMA模型的基本原理
  将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,
  
  其中Y是预测对象的观测值, e为误差。作为预测对象Yt受到自身变化的影响,其规律可由下式体现,
  
  误差项在不同时期具有依存关系,由下式表示,
  
  由此,获得ARMA模型表达式:
  
参考文献
  1. ↑ 徐国祥,马俊玲.《统计预测和决策》学习指导与习题.上海财经大学出版社.ISBN:7-81098-492-6.2005


标签:

投资说 » ARMA模型
免责声明:本文由网友提供互联网分享,不代表本网的观点和立场;如有侵权请联系删除。