人民网北京5月20日电 (记者赵竹青)记者从中国科学院获悉,中科院大连化物所焦峰博士、潘秀莲研究员和包信和院士的研究团队在煤经合成气直接转化制烯烃方面有了新的创新,为破解高活性和高选择性难以兼得这一“跷跷板”瓶颈问题提供了一个行之有效的科学方法。相关研究成果于5月19日发表在《科学》(Science)杂志上。
化学工业中,85%以上的过程都依赖于催化剂来加速反应速率。但在大多数情况下,决定催化反应效率的两个重要参数——反应物的转化率和目标产物的选择性往往相互纠缠,就像“跷跷板”一样,转化率提高了,选择性就降低,此消彼长,无法同时兼顾。如何解开这种“纠缠”,破解“跷跷板”效应,实现更精准、更高效的催化,是催化基础科学和应用研究的重要挑战,也是催化研究工作者一直努力的方向。
据《科学》杂志2016年报道,该团队在研究煤经合成气直接转化为低碳烯烃过程中,创制了一种活性中心分离的氧化物和分子筛复合的催化体系(OXZEO),成功地实现了反应物活化和产物生成两个活性中心的有效分离。在国际上首次实现了一氧化碳转化率为17%时,低碳烯烃的选择性高达80%,从而突破了百年来经典费托合成低碳烃选择性难以逾越的58%理论极限。
随后,研究所与企业合作,于2020年在工厂完成了年产低碳烯烃1000吨的工业性试验,验证了这一过程在科学原理上的正确性和工艺过程的可行性。据统计,国内外现有20余个研究团队基于该概念进行系统研究,研究体系从合成气转化拓展到了二氧化碳的高效利用。
为了进一步认识和理解该创新反应的机理,提高该过程的催化反应效率,大连化物所潘秀莲和包信和研究组与中国科学技术大学研究团队紧密配合,进行了系统深入地基础研究和理论分析。结果发现,现有分子筛活性中心不仅催化主反应,也催化了副反应,因此这个共同的活性中心就像“跷跷板”的支点一样,转化率一端提高了,另一端的选择性就降低,无法实现转化率和选择性的同时提高,从而导致了低碳烯烃收率无法提高。实验结果表明,加速中间体的传输和转化,同时降低分子筛孔道中副反应的发生,是解开这种“纠缠”的有效途径。
在大量实验基础上,研究组最近创造性地研制了金属锗离子同晶取代的微孔分子筛(GeAPO-18),通过提高对活性中间体的拉动能力,促进中间体的生成速率,降低副反应的发生,双管齐下,提高催化反应性能。这样,就将原本架在一个支点两端的转化率和选择性“跷跷板”,蝶变成触接在两个相互分开活性位上的翅膀,可以自由翱翔。
在优化的反应条件下,该催化剂在保持低碳烯烃选择性大于80%的条件下,一氧化碳的单程转化率达到85%,实现了低碳烯烃收率达48%的国际最好水平,超过了第一代OXZEO催化剂的一倍以上。该结果在线发表于最新一期《科学》上。
“该研究对类似双功能催化体系应该具有普适性,必将从基础上推动分子筛催化研究领域的进一步发展。”潘秀莲表示,下一步将努力发展面向工业过程的新一代OXZEO催化剂,加速工业化应用的进程。
包信和也提出了更高目标:未来进一步与可再生能源制备的绿氢相结合,发展我国独创的低耗水、低碳排放的新型煤化工体系,以此助力保障国家的能源、资源安全和“双碳”目标的实现。
【责任编辑:李琛】 猜你喜欢: